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Abstract 
A significant majority of the state of the art autonomous sensing and navigation 
technologies rely on good lane markings or detailed 3D maps of the environment and are 
more suited for urban communities. On the other hand, a large number of rural roads in 
the U.S. do not have lane markings and have irregular boundaries. These challenges are 
common to many small and rural communities (SRCs), defined as an incorporated city, 
town or village with a population of less than 50,000. These communities are sparsely 
connected and cover huge areas. The objective of this work is to develop an efficient 
sensing and navigation system for SRCs. To this end we develop a novel Rural Road 
Detection dataset for training and evaluation of sensing algorithms. We also propose road 
descriptors along with an initialization technique for localization that allows for fast global 
pose estimation on crowd sourced topological maps such as the Open Street Map (OSM). 
We test our algorithms on (real world) maps and benchmark them against other map 
based localization as well as SLAM algorithms. Our results show that the proposed 
method can narrow down the pose to within 50 centimeters of the ground truth 
significantly faster than the state of the art methods. 
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Introduction 
The current role of road transport cannot be overstated. It serves as a crucial lifeline, particularly 
in the United States, where it dominates as the primary mode of transportation. Despite 
approximately 81% of the American population residing in urban and suburban areas, rural roads 
account for about 68% of the country's road network [1]. This striking disparity in road distribution 
arises from the vast expanses of sparsely populated rural regions, resulting in a situation where 
there are more roads than people. To put it into perspective, there are 9,494 lane miles per 100,000 
residents in rural areas, compared to a mere 1,056 in urban areas. At the same time, residents of 
rural communities must cover greater distances to access basic amenities. 

The impact of significantly lower population density in rural areas extends to various aspects, 
including road safety. Traffic incidents on rural roads tend to have higher risk of death or injury 
due to limited access to emergency care. This stark reality is exemplified by the fact that 
approximately 43% of all highway fatalities occur on rural roads, despite only 19% of the 
population residing in these regions [1]. In addition, rural areas encompass 85% of counties where 
at least 20% of the population is over 65 years old [2]. Consequently, the development of a robust 
transportation system is crucial to cater to the needs of the aging population residing in these areas. 

Moreover, considering that a significant portion of agricultural lands and industries are situated in 
rural areas, rural roads also play a vital role in facilitating freight transportation. These roads serve 
as conduits for substantial volumes of freight. In fact, it is estimated that rural roads account for 
approximately 46% of a truck's vehicular miles traveled [1]. 

The surge of research in the field of autonomous vehicles (AVs) holds great promise in terms of 
improved road safety, enhanced connectivity, better access to facilities, and efficient logistics and 
freight transportation. While these advantages are undoubtedly valuable in urban environments, 
they are even more crucial for small and rural communities (SRCs)—communities characterized 
by sparse connectivity and vast geographic coverage and defined as any incorporated city, town, 
or village with a population of less than 50,000. As of 2019, there were 18,723 SRCs in the U.S. 
[1, 2]. 

Following the Defense Advanced Research Projects Agency (DARPA) Grand Challenge in 2004, 
AVs have been highly researched, which is why significant progress has been made in their 
development. A prevailing trend in this domain has been the division of the self-driving task into 
distinct subtasks, including sensing, planning, and acting. Among these, the sensing or perception 
problem stands as the foundation of the entire system, as subsequent decisions and actions rely on 
the vehicle's ability to "see" its surroundings. In recent years, perception systems have increasingly 
incorporated machine learning and deep learning techniques [3], requiring a substantial amount of 
data for training purposes. 
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The scarcity of annotated rural datasets has resulted in limited progress in the development of 
perception systems capable of addressing the unique challenges and characteristics of rural roads. 
The significance of this issue is illustrated in Figure 1, showing a road detection model trained on 
the KITTI road dataset. While the model attained a respectable mean Intersection over Union 
(mIoU) score of 0.8 on the validation set, its performance significantly deteriorated when tested 
on rural roads. Specifically, the model failed to accurately detect the road surface, highlighting the 
fact that rural roads fall within an unfamiliar data distribution for the model. 

 

Figure 1. Annotated photos. Domain adaptation problem in machine learning. 

To address these challenges and facilitate advancements in AVs for rural areas, this research offers 
the following contributions: 

1. Rural Road Detection Dataset (R2D2): By making the R2D2 accessible, we aim to stimulate the 
development and refinement of algorithms specifically designed to tackle the intricacies of rural 
road environments. R2D2 offers real-world data from rural roads, serving as a valuable resource 
to evaluate the performance and effectiveness of various sensing algorithms. This dataset will 
enable researchers and developers to assess their systems and compare them against standardized 
metrics. 

2. Global Localization using Road Descriptors: We proposed a novel road descriptor as a concise 
feature representation for rural roads. We used these road descriptors to generate an initial pose 
belief, which was then passed to a particle filter for localization. The choice of initial belief 
significantly impacts the rate of convergence of particle filter-based localization algorithms, 
especially for global localization, where the search space is very large. The road descriptor search 
(RDS) technique we introduced helps in the selection of this initial belief. We demonstrated this 
through simulations and real-world tests by comparing the performance of the localization 
algorithm with and without the generation of an initial belief.  
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Background 
As previously stated, in the realm of AVs, the prevailing trend has been to break down the self-
driving task into distinct subtasks: sensing, planning, and acting, with the sensing or perception 
subtask being the most important. This is because subsequent decisions and actions heavily rely 
on the information gathered from the vehicle's surroundings. In recent years, perception systems 
have increasingly embraced the utilization of machine learning and deep learning methodologies 
[3]. However, an inherent challenge faced by deep learning-based methods is domain adaptation, 
which hinders their effectiveness and necessitates a substantial availability of extensive datasets. 

The domain adaptation problem applies in the case of rural road scenes as well. The applicability 
of AVs in rural driving scenarios is less pronounced due to three key factors: the structure, scale, 
and sparsity of features, all of which are intricately linked to the nature of rural roads. 

First, the structure of rural roads differs significantly from their urban counterparts. Urban roads 
generally exhibit a well-defined and consistent structure, whereas rural roads display considerable 
variations. These variations encompass inconsistent road markings and diverse road surfaces, such 
as gravel or dirt roads, in addition to the typical asphalt or concrete found in urban areas. 

Another challenge arises from the scale and sparsity of features when employing dense maps for 
rural roads. Urban scenes are typically characterized by a plethora of distinctive features, including 
traffic signs, buildings, curbs, and lane markings, among others. Conversely, rural communities 
encompass vast areas with low population densities. Consequently, rural roads are predominantly 
surrounded by vegetation, with a scarcity of features crucial for localization. Figure 2 illustrates 
this disparity, where the urban scene exhibits numerous informative landmarks like buildings, 
sidewalks, and lane markings, whereas the rural scene lacks such prominent features. 

 

Figure 2. Color-coded images. Difference between urban (left) and rural (right) scenes. 
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Table 1 presents a comprehensive comparison of the prominent datasets used in the field of AVs. 
Over the past 15 years, with the advent of deep learning for computer vision, a substantial number 
of datasets have been released for evaluating perception algorithms. Initially, most datasets 
focused on object localization and classification in 2D images. However, in 2008, the CamVid 
dataset [4] emerged as one of the first datasets specifically designed for semantic segmentation. It 
comprised 700 images captured in the vicinity of Cambridge, UK, accompanied by pixel-wise 
annotations. 

Table 1. Comparison of AV Datasets 

 

Subsequently, numerous large-scale image-only datasets were introduced, with notable examples 
including BDD100K [5], Mapillary Vistas [6], and D2-City [7]. CityScapes [8] expanded on this 
concept by providing instance-level semantic labels for images collected from 50 different cities. 

Further advancements in AV perception underscored the importance of utilizing multiple sensor 
modalities, particularly for challenging scenarios like driving in adverse weather conditions or at 
night when passive sensors such as cameras face significant limitations. Active sensors such as 
radar and lidar demonstrated improved performance in such situations while also offering 
redundancy within the system. This led to a demand for datasets that provide time-synchronized 
data from multiple sensors. 

The KITTI dataset [9] was a pioneering effort in this direction, offering camera and lidar data from 
approximately 1.5 hours of urban driving. It included 2D bounding boxes for images and 3D 
bounding boxes for lidar point clouds. Building upon KITTI, the SemanticKITTI dataset [10] 
provided semantic labels for point clouds. 

While KITTI primarily provided images from a front-facing camera, the NuScenes dataset [11] 
introduced the concept of scene understanding by offering 360-degree surround view data from 
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six cameras, lidar, and radar. The dataset also included 2D and 3D maps with detailed semantic 
annotations, collected in Singapore and Boston. The Waymo Open Dataset [12] utilized a 130-
channel lidar and provided data from urban and suburban environments primarily in California. 

It is evident that each of these datasets focuses on capturing data from urban landscapes. For rural 
roads, the CaRINA dataset [13] provides road detection data and benchmarks from selected urban 
and semi-urban scenarios in Brazil. However, its main emphasis lies in the detection of road 
surfaces in images and point clouds. Another dataset, HSI Road [14], offers hyperspectral images 
depicting various types of road surfaces, such as asphalt, gravel, and sand. 

Based on our examination of the most popular driving datasets, we have identified several notable 
commonly shared characteristics: 

● Multi-Modal Data: As previously emphasized, the integration of multiple sensing 
modalities leverages the strengths of different sensors, leading to the development of robust 
perception systems. 

● Synchronization: It is crucial for the data collected from various sensors to be time 
synchronized. This synchronization enables a fair comparison between algorithms that rely 
on specific subsets of sensors. 

● Calibration and Formatting: Accurate calibration of all sensors is essential, and the 
corresponding calibration parameters must be provided. Without proper calibration, the 
data cannot be effectively utilized. Furthermore, the formatting of both the data and 
annotations should facilitate easy integration into existing workflows. 

To the best of our knowledge, no existing dataset for rural roads fulfills all the aforementioned 
requirements. In response to this gap, we have created the R2D2 to address this need. 

R2D2: Rural Road Detection Dataset 

Platform 
For data collection purposes, we utilized a 2018 Lincoln MKZ vehicle that was retrofitted with a 
drive-by-wire system. In addition, we employed the following sensors: 

● Ouster OS1-128: This high-resolution lidar sensor features 128 beams and a horizontal 
angular resolution of 0.3 degrees. 

● Zed Stereo Camera: We employed a high-definition stereo camera capable of estimating 
depth within a range of up to 40 meters. 

● Xsens MTi 680G: This inertial measurement unit (IMU) incorporates an accelerometer, 
gyrometer, and a built-in Global Navigation Satellite System (GNSS) receiver. 

To illustrate our data collection platform and the sensor positioning, refer to Figure 3. To ensure a 
360-degree field of view for the lidar, we elevated that sensor above the vehicle's roof using a 
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mounting fixture. The stereo camera is situated at the front of the car, positioned just below the 
lidar sensor to maximize the overlap in their respective fields of view. As depicted in Figure 3, the 
GPS+IMU unit is affixed to the vehicle's body, positioned above the rear axle. 

 

Figure 3. Diagram. Data collection platform. 

Route Selection 
In contrast to urban roads, rural roads exhibit structural variations, including inconsistent, faded, 
or even absent road markings, as well as the absence of curbs and sidewalks. Moreover, the texture 
of the road surface differs, with gravel or dirt being prevalent alongside the asphalt or concrete 
commonly found on urban roads. When selecting routes for data collection, we prioritized those 
that effectively capture the diverse structural and surface characteristics observed on rural roads. 
All data collection occurred within the rural areas surrounding Bryan, Texas. Figure 4 provides a 
graphical representation of the routes employed for data collection. Broadly speaking, the dataset 
encompasses samples from three distinct types of road conditions: 

● Highways: These roads exemplify well-structured thoroughfares, complete with lane 
markings and various traffic signs. 

● Rural single-lane roads: This category encompasses roads bordered by vegetation on either 
side. 

● Farmlands: The dataset also includes roads flanked by farmland on both sides, providing a 
unique context for analysis. 
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Figure 4. Map. Routes used for data collection. 

Calibration 
To calibrate the stereo cameras, we employ a checkerboard pattern, as depicted in Figure 5. The 
intrinsic parameters obtained from this calibration process are readily available with the dataset. 
As for the extrinsic calibration between the lidar and stereo camera, we employed a target-based 
calibration method proposed by Verma et al. [15]. With this method, we utilized a checkerboard 
as the calibration target. By isolating the points from the lidar that correspond to the checkerboard, 
along with their corresponding images, we established a set of 40 image-point cloud pairs for 
estimating the extrinsic parameters. Following the calibration procedure, we achieved a mean re-
projection error of 7 pixels. Figure 5 illustrates an example of lidar points being projected onto a 
camera image after calibration. 
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Figure 5. Photo and lidar points. Lidar camera calibration setup. 

Annotations 
For data annotation, we focused on three key classes that we considered most relevant to the self-
driving task: the road, road users, and traffic signs. The road class encompasses all points in the 
environment that would typically be identified as a drivable surface by an average human driver. 
Road users include various sub-classes such as vehicles, pedestrians, cyclists, trucks, animals, and 
other types of vehicles. Lastly, the traffic signs class includes elements such as stop signs, traffic 
lights, warning signs, and signs related to road construction or maintenance. These classes were 
manually annotated in both the lidar point clouds and camera images. In the following section, we 
detail the annotation process and labeling procedures for the lidar point clouds. 

Semantic Point Cloud Annotations 
Given the high resolution of the lidar sensor employed in our dataset, a single point cloud contains 
a substantial amount of data, with 131,072 points. Annotating each point individually for every 
point cloud would be an arduous and time-consuming task. Instead, we adopted the approach 
proposed for the SemanticKITTI dataset [10], wherein point cloud registration is performed 
between successive frames. This registration allowed us to estimate the transformations between 
consecutive frames in the dataset, thus constructing a comprehensive map of the entire sequence. 
Consequently, all objects of interest within the map can be annotated simultaneously, significantly 
reducing the time required for labeling the point clouds. 

Experiments and Results 
To establish baseline results, we conducted training experiments using state-of-the-art models for 
semantic segmentation and object detection on our dataset. The following sections provide detailed 
explanations of these baseline experiments. 
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Semantic Segmentation 
For the semantic segmentation baselines, we employed RangeNet++ [16], a fully convolutional 
model specifically designed for semantic segmentation. We trained the model using three different 
backbones: Darknet21 [17], Darknet53 [17], and Squeezeseg [18]. Two different sizes of input 
range images were used for training: 128x1024, which corresponds to the full-size images obtained 
from our point clouds, and 64x512. We use two different image sizes to provide baselines for 
model performance improvement by using a large image size. From the results in Table 2, we see 
that the performance improvement is marginal for Darknet21 with a 128x1024 image resolution. 
This suggests that most features are intact after reducing the image to 64x512 size. 

Table 2. Results from Training Segmentation Model 

 

The loss function employed was weighted cross entropy, and Stochastic Gradient Descent (SGD) 
was used as the optimizer. The initial learning rate was set to 1𝑒𝑒−2 and decayed at a rate of 0.05% 
per epoch. All models underwent training for 150 epochs, and we recorded performance metrics 
such as accuracy and mIoU. The results obtained from the training process are presented in Table 
2. Additionally, Figure 6 provides an illustrative example showcasing the model predictions after 
training, alongside their corresponding ground truth values. 

 

Figure 6. Color-coded images. Qualitative results from training Segmentation model on R2D2. 

Object Detection 
Since cameras are cheap and provide color-rich images, object detection in camera images serves 
to complement detections in lidar point clouds. This would be particularly useful for rural roads 
where obstacles may be occluded by vegetation. To establish baseline results, we conducted 
training experiments using state-of-the-art object detectors on the image data from R2D2. 
Specifically, we trained two variants of YOLOv5 [19], namely YOLOv5s and YOLOv5m. Each 
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model was trained using two different input image sizes: 640 pixels and 860 pixels. The model 
weights were initialized using pre-trained weights from training on the COCO Image dataset. The 
training data and validation data were split with a ratio of 95:5, respectively. All models underwent 
training for 300 epochs, with early stopping if there was no performance improvement in the last 
100 epochs. Optimization was performed using SGD with a learning rate of 0.01. Other settings, 
such as anchor box scale and aspect ratios, were set to their default values. 

The YOLOv5s model achieved a mean Average Precision (mAP50) score of 0.39 when using 860-
sized input images. However, we observed that this model suffered from poor recall, particularly 
in detecting smaller objects that may be partially occluded. On the other hand, the YOLOv5m 
model achieved a mAP50 score of 0.41. Complete training results from the baseline experiments 
are provided in Table 3, and an example showcasing the results after training appears in Figure 7. 

Table 3. Object Detection Results 

 

 

Figure 7. Annotated photos. Qualitative results from training Object Detection models on R2D2. 

Global Localization using OpenStreetMap 
Accurate pose estimation, which refers to determining the position and orientation of a mobile 
robot in its environment, is crucial for effective navigation. Similar to how humans rely on their 
understanding of the surroundings, robots rely on this ability, too. AVs often use detailed 3D maps 
created in advance to enhance their perception and estimate their pose based on sensor data. 
However, this approach is not well-suited for rural areas, which are sparsely connected and cover 
large regions. 
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In such cases, topological maps like OpenStreetMap [20] provide a valuable alternative. However, 
localizing a vehicle accurately using these maps, especially for global localization over large areas, 
is a challenging task. A GPS sensor could be used to aid localization, but GPS sensors provide low 
precision and may lose signal intermittently. Due to this, the team could not rely solely on a GPS 
sensor for localization. To address this challenge, we proposed the use of road descriptors along 
with an initialization technique for localization, enabling fast and reliable estimation of the 
vehicle's global pose. We evaluated our algorithms on real-world maps spanning areas as large as 
36 square kilometers. The results demonstrate that our proposed method significantly outperforms 
state-of-the-art techniques, narrowing the estimated pose to within 1.5 meters of the ground truth 
in a much shorter time. 

Methodology 
The main task in the localization problem is to estimate a robot’s pose in a predefined map. In 
other words, it means calculating the belief of a robot's pose, 𝑏𝑏𝑒𝑒𝑏𝑏(𝑥𝑥𝑡𝑡) at time 𝑡𝑡, by combining 
information from previous sensor measurements 𝑧𝑧1:𝑡𝑡, control inputs 𝑢𝑢1:𝑡𝑡, and map information 𝑚𝑚. 
In other words, 

𝑝𝑝(𝑥𝑥𝑡𝑡 |𝑧𝑧1:𝑡𝑡, 𝑢𝑢1:𝑡𝑡 ,𝑚𝑚)  =  
𝑝𝑝(𝑥𝑥𝑡𝑡,𝑚𝑚)∑ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1𝑖𝑖 )𝑏𝑏𝑒𝑒𝑏𝑏(𝑥𝑥𝑡𝑡−1𝑖𝑖 )𝑛𝑛

𝑖𝑖  
𝑝𝑝(𝑧𝑧𝑡𝑡|𝑚𝑚)   

Road Descriptors 
As shown in the above equation, the motion model relies on the previous state 𝑥𝑥𝑡𝑡−1 and the input 
𝑢𝑢𝑡𝑡. Since this is a recursive algorithm, the initial state needs to be set for the first iteration. The 
choice of initial belief has a significant impact on the convergence rate of Monte Carlo localization 
algorithms [21], especially for global localization tasks where the search space is extensive (this 
will be demonstrated later in the results section). To narrow down the search space and improve 
the initial belief, we proposed road descriptors that incorporate road geometry information at 
specific positions on the map. In rural scenes, roads serve as the primary visual features since they 
often lack consistent features such as buildings found in urban environments. 

The road descriptor for a given point 𝑝𝑝 on the map is represented by a 2D binary array 𝐷𝐷, where 
the rows correspond to the distances between 𝑝𝑝 and the road features, and the columns correspond 
to the angles formed by the position vectors of the road features with respect to 𝑝𝑝. The values in 𝐷𝐷 
are generated through a ray casting operation, as depicted in Figure 8. To construct one row of 𝐷𝐷, 
a ray of length 𝑟𝑟 is projected outward from 𝑝𝑝. This process is repeated for all angles 𝜃𝜃 in 1-degree 
intervals. The value in 𝐷𝐷 is determined based on whether the ray intersects with a road point or 
not, following the specified rule: 

𝐷𝐷(𝑟𝑟,𝜃𝜃) =  {1 , 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑙𝑙 𝑟𝑟 𝑟𝑟𝑜𝑜𝑟𝑟𝑙𝑙 𝑝𝑝𝑜𝑜𝑖𝑖𝑙𝑙𝑡𝑡 0,   𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒  

The outcomes of this computation for a given radius at two different road positions are depicted 
in Figure 8. By repeating this process for multiple radii, multiple rows can be generated, and the 
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road descriptor for point 𝑝𝑝 can be calculated, as illustrated in Figure 9. In our framework, these 
road descriptors are precalculated for each node on the OpenStreetMap and stored in a lookup 
table for the initialization step. 

 

Figure 8. Diagram. Road descriptor generation. 

 

Figure 9. Diagram. 2D road descriptor. 

The measurements 𝑧𝑧𝑡𝑡 for the filter consists of lidar point clouds with labels indicating road points. 
To establish a correlation between point cloud data and road descriptors, the point clouds are 
transformed into lidar descriptors to enable a descriptor search during the initialization phase. This 
is achieved by projecting the point clouds onto a bird's-eye view (BEV) image, as shown in Figure 
8. The lidar descriptor 𝐿𝐿 is then generated using the same ray casting process described earlier for 
road descriptors. In this case, the ray casting starts from the center of the BEV image. 

Now, to generate the initial belief 𝑏𝑏𝑒𝑒𝑏𝑏(𝑥𝑥𝑡𝑡0), a two-step approach is employed. Firstly, the lidar 
point cloud is converted into the descriptor form, which serves as the query descriptor 𝐿𝐿 for the 
subsequent search steps. Initially, a search is conducted to identify the top 1,500 positions on the 
map where the road descriptors exhibit similarity to the query descriptor. Since descriptor values 
depend on orientation, they are flattened by calculating the row sum for each row and converting 
them into a one-dimensional vector, as shown in Figure 10. This step renders their rotation 
invariant. The similarity score used is defined as: 
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𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑏𝑏𝑟𝑟𝑟𝑟𝑖𝑖𝑡𝑡𝑟𝑟 𝑆𝑆𝑆𝑆𝑜𝑜𝑟𝑟𝑒𝑒 =  
1

�|𝐿𝐿 − 𝐷𝐷|�
2

 

 

Figure 10. Diagram. Steps for initialization of particles. 

In the second step, to further limit the number of matches for a given query descriptor, the 
orientation is taken into consideration. In this case, the complete 2D descriptors for 𝐿𝐿 and 𝑅𝑅 are 
utilized. To achieve this, for each position in 𝑆𝑆, all orientations ranging from 0 to 2𝜋𝜋 and their 
corresponding descriptors are examined. They are then sorted based on their similarity score, and 
the top 1,000 are chosen as potential poses for initializing the particle filter. 

Regarding the motion model, we have the control input 𝑢𝑢𝑡𝑡   =  [𝑙𝑙𝑒𝑒, 𝑙𝑙𝑙𝑙, 𝑙𝑙𝜃𝜃]𝑇𝑇, which represents the 
estimated change in pose between time steps 𝑡𝑡 − 1 and 𝑡𝑡. 

The control input 𝑢𝑢𝑡𝑡 and the initial estimates 𝑥𝑥𝑡𝑡−1 are utilized to generate a pose hypothesis by 
sampling from the probability distribution as follows: 

𝑝𝑝(𝑥𝑥𝑡𝑡−1) =  𝛮𝛮(𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡 ,𝑞𝑞) 

Measurement Model 
In the measurement model, a distance function is employed to assign probability mass to each pose 
hypothesis 𝑥𝑥𝑡𝑡 within the set 𝑋𝑋𝑡𝑡. 

To compute this distance function for a given pose hypothesis 𝑥𝑥𝑡𝑡, we transform the segmented 
point cloud into the map frame using the pose represented by 𝑥𝑥𝑡𝑡. 

Based on the distance 𝑙𝑙(𝑝𝑝(𝑟𝑟𝑜𝑜𝑟𝑟𝑙𝑙), 𝑖𝑖) between the nearest road edge and a road point 𝑝𝑝(𝑟𝑟𝑜𝑜𝑟𝑟𝑙𝑙) in 
the segmented cloud, we estimate 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡,𝑚𝑚) as follows: 

𝑝𝑝(𝑧𝑧𝑡𝑡 |𝑥𝑥𝑡𝑡,𝑚𝑚)  =  �𝛿𝛿(𝑙𝑙𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑖𝑖)
𝑖𝑖=𝑛𝑛

𝑖𝑖=1
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where n is the number of road points in the segmented point cloud and 𝛿𝛿 represents the distance 
function, which is a Gaussian with zero mean and covariance 𝑟𝑟:   

𝛿𝛿 �𝑙𝑙𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖� = 𝑁𝑁(0, 𝑟𝑟) 

The distance function returns the maximum probability for projected points 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 that are close 
to road edges on the map. In effect, this means a greater probability mass will be assigned to poses 
where the road points 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 are well aligned to the road geometry in the map. 

The probabilities of all pose hypotheses 𝑥𝑥𝑡𝑡 ∈ 𝑋𝑋𝑡𝑡    are updated in this way. 

The poses are then sampled based on the assigned probability mass. Finally, the pose estimate 𝑥𝑥𝑡𝑡 
is then estimated as the weighted average over all poses. 

𝑥𝑥𝑡𝑡  =  
∑𝑖𝑖 𝑝𝑝(𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖
∑𝑖𝑖 𝑝𝑝(𝑥𝑥𝑖𝑖)

  

Experiments and Results 
To showcase the benefits of utilizing road descriptors to initialize prior beliefs, we conducted two 
experiments. Initially, we employed OpenStreetMap to simulate lidar road detection. This was 
performed to assess the effectiveness of the road descriptor technique independently of the road 
segmentation algorithm's performance. Subsequently, we evaluated the global localization 
performance of the MapLite [22] algorithm using real-world data, both with and without the 
inclusion of road descriptors, to validate the effectiveness of the proposed approach. 

Simulation Tests 
To carry out the simulation, instead of utilizing real-world point clouds with road labels as 
described in the Methodology section, we generated a virtual BEV image from OpenStreetMap. 
This image provides a top-down snapshot of the map region surrounding the actual pose 𝑥𝑥𝑡𝑡. The 
virtual BEV image served as the basis for generating the lidar descriptor 𝐿𝐿 as detailed in the 
Methodology section. Subsequently, the lidar descriptor was employed as the query descriptor for 
the RDS process. 

To simulate a route, we utilized position and orientation information derived from OpenStreetMap 
nodes to generate ground truth measurements. For each ground truth measurement, the RDS was 
performed over a map segment spanning 36 sq. km. The lidar descriptor obtained from the virtual 
BEV image was then utilized as the query descriptor. For each query descriptor, we identified the 
top 1,500 poses on the map that exhibited similar descriptors. If the true pose was within 5 m of 
the top 1,500 matches, we considered the descriptor search to have converged. 

The results of this simulation are illustrated in Figure 11. The segments of the route where the 
RDS converged are highlighted in red, orange, or yellow, based on the distance to the ground truth. 
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If RDS failed to converge within 15 meters of the ground truth position, the corresponding nodes 
along the route are left uncolored. 

 

Figure 11. Map. Simulation results. 

Analysis of the simulation results revealed that the descriptor search technique demonstrates the 
highest effectiveness in route segments featuring road attributes such as turns and intersections. 
However, it encounters difficulties in segments consisting solely of straight roads. This is 
particularly evident in the outcomes of the real-world test for Route 2 (Figure 13), where 
localization is lost in the straight portions of the route but subsequently regained in segments with 
intersections and turns. 

Real-world Tests 
The performance evaluation of the particle filter, with and without the proposed initialization using 
RDS, was assessed using real-world data collected from two routes near Bryan, Texas. To gather 
the data, a test vehicle equipped with a 128-channel lidar sensor, a GNSS receiver with a horizontal 
sensing accuracy of 2.0 meters, and sensors for wheel speed and steering angle were employed. 

To detect the road surface, a range image-based segmentation method inspired by RangeNet++ 
[13] was utilized. The model was trained on the Texas A&M AV Rural Road Dataset [23], which 
comprises 2,800 annotated range images specifically designed for road point detection. The dataset 
also includes vehicle bus data, such as GPS, IMU, steering, brake, throttle inputs, and wheel speed 
measurements. Altogether, the dataset encompasses approximately 15 minutes of recorded driving 
data. 
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GPS measurements were intentionally excluded from all tests and only utilized as ground truth for 
performance evaluation purposes. The control input 𝑢𝑢𝑡𝑡 was generated using a bicycle model based 
on measurements of wheel speed and steering angle. To optimize runtimes, the point clouds were 
downsampled using a voxel grid with voxel sizes of 2x2 meters, and the distance to the nearest 
edge was precomputed for all map points. Similarly, road descriptors were precomputed for all 
nodes on the map. 

To emphasize the computational advantages of the proposed approach, the size of the search space 
on the map was varied. Two tests were conducted for each of the considered routes. The first test 
involved a search space of 9 sq. km, followed by a second test with a search space of 36 sq. km. 
For both tests, the MapLite algorithm was first initialized with 90,000 particles uniformly 
distributed across the entire search space. Subsequently, MapLite was tested again with RDS 
initialization, where particles were initialized around the top 1,500 matches returned by the 
descriptor search algorithm. 

The first route (Route 1) consisted of data that the road segmentation model had previously 
encountered, as it was used during training. The localization results for Route 1 are depicted in 
Figure 12. It is evident that the time required for the MapLite algorithm to converge to the true 
position was considerably longer compared to when RDS was utilized for particle initialization. 

 

Figure 12. Graphs and maps. Results from real-world tests - Route 1. 
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The utilization of RDS initialization demonstrates a notable reduction in time to convergence for 
both the 9 sq. km and 36 sq. km search spaces. In Figure 12, during the 9 sq. km search test, it is 
evident that the MapLite algorithm converged only after encountering road features up to turn B, 
as indicated by the decrease in error after approximately 400 time steps, where each time step is 
100 milliseconds. Conversely, when RDS initialization was employed, the algorithm rapidly 
converged after around 100 time steps, corresponding to the vehicle reaching turn A, showcasing 
a significantly faster convergence compared to the previous scenario. 

Due to the larger search space, the algorithm requires more time to converge for the 36 sq. km 
search space. As depicted in Figure 12c, when the algorithm is initialized without the descriptor 
search, it converges to an erroneous position on the map, leading to substantial position errors. 
This signifies that the number of particles used was insufficient relative to the size of the search 
space. However, when road descriptors are incorporated, the position estimate aligns closely with 
the ground truth after the vehicle reaches turn A, albeit with a slight degree of error remaining. 
This is attributed to a few particle clusters concentrated in other regions of the map. However, as 
the vehicle progresses to turn B, these alternative clusters are subsequently eliminated, resulting 
in the algorithm converging to the ground truth position. 

Route 2 poses a more demanding test case due to the increased complexity and density of the road 
network in the region. Furthermore, this route was not previously encountered by the road 
segmentation model. Similar to Route 1, we conducted two tests using the MapLite and MapLite 
+ RDS algorithms, with the results displayed in Figure 13. 
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Figure 13. Graphs and maps. Results from real-world tests - Route 2. 

It is evident that the MapLite algorithm alone fails to converge in both the 9 sq. km and 36 sq. km 
test scenarios, reaffirming that the number of particles employed was insufficient in relation to the 
size and intricacy of the considered map. However, when road descriptors are incorporated in both 
tests, the algorithm successfully converges to the actual vehicle position. The notable fluctuations 
in positional errors observed in Figure 13 during the initial phase can be attributed to the presence 
of particles in other parts of the map that exhibit similar road geometry, such as turns C and E 
illustrated in Figure 13. Nevertheless, as the vehicle reaches the intersection at D, those particle 
clusters are eliminated, leading to the convergence of the pose estimate to the ground truth position 
after approximately 500 time steps. Furthermore, the proposed algorithm can run in real time, as 
the computational time for each iteration is less 100 milliseconds, which is less than the time 
between two lidar measurements (~100-120 milliseconds). 

Conclusions and Recommendations 

Conclusion 
In this project, we introduced the R2D2, a pioneering resource for evaluating AV perception 
algorithms specifically designed for rural road scenarios. What sets this dataset apart is its focus 
on rural road environments and its utilization of a synchronized multi-modal sensor suite 
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(including lidars, cameras, GPS, and IMU sensors). This research went beyond sensor data by 
providing semantic labels for point clouds and object labels for camera images, thereby enabling 
comprehensive perception model training. By making this dataset available to the research 
community, our aim is twofold: to drive advancements in machine vision and AV perception and 
to ensure the inclusivity and accessibility of AV technologies in rural communities. 

Furthermore, we present a localization algorithm designed to enable global localization on rural 
roads. Our proposed algorithm leverages road descriptors to generate an initial belief, thereby 
augmenting the state-of-the-art approaches. This algorithm serves as the foundation for 
implementing a lidar-based, GPS-denied localization technique for global localization. 
Experimental results demonstrate that our algorithm can accurately recover a vehicle's pose, 
achieving a mean error of 1.5 meters even in expansive maps spanning up to 36 sq. km. The 
performance improvements facilitated by the RDS initialization make this method particularly 
suitable for addressing the kidnapped robot problem  - a situation where we do not have a good 
initial guess of the robots pose. 

Future Work 
While this work makes significant contributions in the field of rural road perception and 
localization, there are several avenues for further exploration and improvement. Some potential 
directions for future research include: 

1. Integration of additional sensor modalities: Although our dataset incorporates lidar, 
camera, GPS, and IMU sensors, future work could explore the integration of other sensor 
modalities, such as radar or thermal imaging, to further enhance perception capabilities in 
rural environments. By combining multiple sensor inputs, the robustness and accuracy of 
perception algorithms can be improved. 

2. Advanced road descriptor techniques: While the utilization of road descriptors has proven 
effective in our localization algorithm, there is room for exploring more sophisticated road 
descriptor techniques. Investigating advanced feature extraction methods and 
incorporating contextual information can potentially enhance the accuracy and robustness 
of the descriptor matching process. 

3. Dynamic mapping and localization: Our current approach focuses on global localization in 
static rural road environments. Future research could extend this work to address dynamic 
mapping and localization challenges, such as handling moving obstacles or road 
construction zones. Developing algorithms that can adapt to dynamic changes in the 
environment will be crucial for real-world deployment of AVs in rural areas. 

4. Optimization of runtime efficiency: While our algorithm demonstrates promising 
performance, there is potential for optimizing the runtime efficiency. Exploring techniques 
such as parallelization, distributed computing, or efficient data structures can help reduce 
computational overhead and enable real-time operation in resource-constrained settings. 
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5. Real-world deployment and validation: To validate the effectiveness of the proposed 
algorithm in practical scenarios, it is essential to conduct real-world deployment and 
rigorous field testing. Future work should focus on conducting extensive experiments and 
evaluations on different rural road datasets and under various environmental conditions to 
assess the algorithm's robustness and generalizability. 

By pursuing these avenues for future research, we can further advance the state-of-the-art in rural 
road perception and localization, ultimately bringing us closer to the realization of safe and reliable 
AVs in rural areas. 

Additional Products 

Education and Workforce Development Products 
● Graduate Student (Stephen Ninan) had his M.S. thesis supported by this Safe-D project.  
● Graduate Student (Stephen Ninan) volunteered as a Finals Judge for Texas Junior Science 

and Humanities Symposium in April 2022. 

Technology Transfer Products 
1. The R2D2 has been submitted to the IEEE Intelligent Transportation Systems Conference 

(ITSC) and is under consideration. 
2. The work on global localization is also under review with the IEEE ITSC. It is available at 

the following link: https://arxiv.org/abs/2202.07049 
3. Graduate student (Stephen Ninan) presented the work from this project to multiple OEMs, 

including Rivian Automotive and Lucid Motors.  
4. Stephen Ninan presented an invited talk on this project at the Transportation Research 

Board’s Automated Road Transportation Symposium (ARTS) in July 2022. Title of the 
presentation: AVs in Rural America. 

Data Products  
1. Robot Operating System (ROS) Package for this project with all code and drivers: 

https://github.com/nsteve2407/osm-localization 
2. Dataset collected over the course of this project: 

a. AV Rural Road Dataset was uploaded to the VTTI Dataverse and is accessible at: 
https://doi.org/10.15787/VTT1/AOHI5N 

b. R2D2 is available on the following website: https://autonomy.engr.tamu.edu/r2d2/  

https://arxiv.org/abs/2202.07049
https://arxiv.org/abs/2202.07049
https://arxiv.org/abs/2202.07049
https://github.com/nsteve2407/osm-localization
https://github.com/nsteve2407/osm-localization
https://github.com/nsteve2407/osm-localization
https://doi.org/10.15787/VTT1/AOHI5N
https://doi.org/10.15787/VTT1/AOHI5N
https://doi.org/10.15787/VTT1/AOHI5N
https://autonomy.engr.tamu.edu/r2d2/
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